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Coordinatively controlling the engine and several motor/generators (MGs) during a dynamic process is a challenging problem
because they are coupled together by the electromechanical transmission (EMT) system and all of them have strong nonlinear
characteristics. We develop a novel nonlinear optimal control approach based on the multiobjective dynamic optimization model
of the hybrid electric vehicle (HEV), which is equipped with an EMT system. In this approach, the current states of the components
are obtained by using the state observation algorithm based onKalman filtering; the future states of the components and the feasible
region of the control variables are estimated by using the dynamic prediction algorithm based on the nonlinear model of the EMT
system. Then, the control variables are achieved by using the optimal decision algorithm based on the hierarchical optimization
and nonlinear programming, and the influence of the model error and the external disturbance are modified by using the feedback
compensation algorithm.The simulation results illustrate the efficiency of the proposed control approach, and the test results verify
its real-time performance.

1. Introduction

Hybrid electric vehicles (HEVs) have receivedmuch attention
from researchers, governments, and manufacturers because
of their high fuel economy and low emissions. The driving
performance, which is especially significant for the heavy-
duty vehicles such as SUVs and trucks, can also be obviously
improved due to the additional power of the battery. Addi-
tionally, the hybrid powertrain system can provide electricity
to various electric appliances inside the vehicles. However,
the overall performance of the HEVs strongly depends on
the control strategies because there are several degrees of
freedom in the powertrain system.

Existing control strategies of the HEVs were divided
into two groups according to the mathematical description:
the rule-based and the optimization-based methods [1, 2].
These strategieswere described as deterministic or fuzzy rules
depending on engineers’ experiences and heuristics. As they
are easy to be mastered and suitable for real-time control,

these strategies have been widely used and developed in
the early stages. However, the potential performance of the
HEVs can hardly be fully explored based only on engineers’
intuition [3], resulting in the gradual emergence of various
optimization-based strategies. Dynamic programming (DP)
and equivalent consumption minimization strategy (ECMS)
are the hottest optimization-based strategies [4–8]. The DP
approach can obtain the globally optimal trajectories based
on the driving cycle given in advance, but the solutions
are not suitable for the other driving cycles. Therefore, it is
noncausal and cannot be applied in real-time control process.
The DP solutions were mainly used as a benchmark for the
best performance and to optimize the parameters of the
other control approaches [9–12]. The ECMS approach is an
instantaneous optimization method, which can be applied
on-line as a closed-loop controller [13, 14]. The equivalent
factor is the core of this approach and is also dependent
on the driving cycles. The ECMS was divided into four
categories in [15], and the adaptive equivalent consumption
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minimization strategy (A-ECMS), which represents the latest
ECMS approach, has the greatest potential of achieving
optimal control during on-line operations [16].

To overcome the problem of the DP approach being
dependent on the driving cycles, some researchers utilized
the stochastic process to describe the possible vehicle speeds
and proposed the stochastic dynamic programming (SDP)
approach [17, 18]. However, this approach needs the Markov
model, which is built on the basis of a large number of driving
cycles. Actually, the Markov model can hardly be established
[19]. The model predictive control (MPC), which has been
widely used in industrial fields, was introduced into the
HEVs’ control field and has become a research focus in recent
years [20–24]. The MPC approach mainly consists of three
parts: the predictive model, the receding horizon optimiza-
tion, and the feedback compensation. The predictive model
can be the model of SOC, the states of the engine and the
MGs, or the driving cycles [21].The rolling optimization algo-
rithm can be themaximumprinciple, the quadratic program-
ming, or the DP approach [22–24]. Thus, the MPC approach
has become a general model-based control method, which
can be divided into different types according to the prediction
models and the optimization algorithms. For instance, the
SDP approach can be considered as a kind ofMPC algorithm,
which takes the Markov model as the prediction model and
the DP approach as the optimization algorithm.

To reduce the calculation time of the optimal control
algorithms, some researchers have made significant attempts
at different fields, such as robust control [25], intelligent
control [26], game theory [27], and analytic and other
methods [28, 29].These studies provide basis for the real-time
implementation of the optimal control.

Electromechanical transmission (EMT), a kind of contin-
uous variable transmission, can adjust the engine’s speed to
the optimal region using two ormoremotors [30]. Compared
with the general hybrid system, the EMT system has some
noticeable characteristics. For instance, the power level of the
battery pack in the EMT system ismuch lower than that of the
engine, so the battery pack is not used to provide energy for
the vehicle but to compensate the power deviation between
the MGs and the electric appliances in the dynamic process.
The drivability and fuel economy are improved mainly with
the MGs adjusting the engines’ working points, and the
current supply capacity is satisfied by the MGs by converting
the engine’s mechanical power to electricity. Therefore, the
coordination control of the engine and theMGs is the core in
the EMT system, which is a dynamic optimization problem.

Based on the nonlinear characteristics of the power com-
ponents and their strong coupling interaction, the dynamic
optimization model was built, and an innovative nonlinear
optimal control approach was proposed in this paper. The
control approach was named as OPDC because it consisted
of four parts: state observation, dynamic prediction, optimal
decision, and feedback compensation. The basic idea can
be described as follows. Firstly, the current states of the
system are obtained through the state observation algorithm.
Secondly, the future states of the system are predicted, and
the feasible region of the control variables is obtained through
the dynamic prediction algorithm. Then the optimal control
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Figure 1: Structure diagram of the EMT system.

variables are derived through the optimal decision algorithm
by utilizing the current and future states of the system. Lastly,
the real-time modifications of the model parameters and the
control parameters are done through the feedback compen-
sation algorithm by utilizing the state deviation derived from
the feedback. As it comprehensively uses the current and
future information, the OPDC approach can fully explore the
potential of the system.Moreover, theOPDCapproach can be
considered as a nonlinearmodel prediction control algorithm
because it is a model-based control method and is suitable for
the nonlinear system.

This paper is organized as follows. The principle of the
EMT system is first introduced, and the nonlinear charac-
teristics of the power components and their coupling inter-
actions are analyzed in Section 2. The dynamic optimization
model of the system is constructed in Section 3 based on
the multiple optimization objectives and the nonlinear time-
varying constraints. In Section 4, the OPDC approach is
derived and applied in the EMT system. In Section 5, the
simulation models of the HEV and the control unit are
built, and the on-line test of the OPDC approach is carried
out by using the dSPACE platform, which verifies real-time
performance and effectiveness. Finally, concluding remarks
are presented in Section 6.

2. Characteristics of the EMT System

2.1. Principle of the EMT System. As shown inside the dotted-
line frame in Figure 1, the EMT system consists of not only
mechanical transmission parts, such as the front gears, the
coupling mechanism, and the rear gearbox, but also the
electrical transmission parts such as the MGs (MGA and
MGB), the power unit, and the battery pack. The coupling
mechanism consists of several planetary, clutches, and brakes,
as shown in Figure 2, and the power unit consists of lots of
power electronics. The engine, the MGs, and the drive shaft
are coupledwith themechanical parts, while the battery pack,
the MGs, and the electric appliances are coupled with the
power unit.

The principle of the EMT system can be illustrated as
follows: one part of the engine’s energy is transformed to
electricity by the generator and then transmitted in the form
of electrical power; the other part is directly transmitted by
the planetary in the form of mechanical power. Afterwards,
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Figure 2: Main components of the dual-mode EMT system.

Table 1: Basic vehicle parameters.

Diesel engine Maximum power: 295 kW/223 rad/s
Maximum torque: 1427Nm/168 rad/s

AC MGs Maximum power: 78 kW
Maximum torque: 624Nm

Lithium battery Capacity: 15 Ah
Bus voltage: 550V

Coupling mechanism 𝑘1 = 2.13; 𝑘2 = 2.13; 𝑘3 = 2.13

Gears Front-gear ratio: 1.43
Rear-gear ratio: 4.15

Vehicle Curb weight: 8105 kg
Maximum speed: 110 km/h

the motor transforms the electrical power from the generator
or the battery pack into mechanical power, which would
be the output to the drive shaft after converging with the
mechanical power from the planetary. The battery pack is
mainly used to compensate for the two MGs and the electric
appliances’ power deviation in the dynamic process and to
meet the demand of electricity in some special conditions
(e.g., when the engine starts).

Thus, the engine’s power is transmitted through two paths
in the EMT system: electrical path and mechanical path. As
the engine’s working points can be adjusted to the optimal
region by the MGs, the fuel economy can be noticeably
improved and the engine’s power can be fully used to improve
the driving performance of the vehicle. Additionally, the
electricity demands from the appliances can be satisfied by
the MGs, which transform the engine’s power to electricity.

The research object of this paper is a heavy-duty vehicle,
which is equipped with a dual-mode EMT system. The main
components of the EMT system are three planetaries and two
clutches C and D, as shown in Figure 2.

The basic parameters of the HEV are shown in Table 1.
The engine is equipped with a cooling fan, which is rated at
35 kW. To save on the design cost, the parameters of the two
MGs are completely the same. The cycle life of the battery
pack has a close relationship with its charge and discharge
rates, which are strictly restricted in this paper.

2.2. Nonlinear Characteristics. Thecontrol-orientedmethods
are utilized to analyze the nonlinear characteristics of the key
components in the HEV. The fuel consumption rate map is
shown in Figure 3, which is obtained from the experiment
data of the engine.
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Figure 3: Fuel consumption rate under different powers of the en-
gine.

It can be seen clearly that the engine’s fuel consumption
rate is a nonlinear function of the engine’s speed under each
power curve. To get the analytical expression of the fuel
consumption rate, the polynomial fit method is adopted.The
normalization processing to the engine’s speed is carried out,
with the following equations as

𝛽
𝐸
=

𝜔
𝐸

𝜔
𝐸max

,

fuel (𝛽
𝐸
) =

𝑛

∑

𝑖=0
𝑎
𝑖
𝛽
𝑖

𝐸
,

(1)

where 𝜔
𝐸
and 𝜔

𝐸max are the engine’s actual speed and max-
imum speed, respectively, 𝛽

𝐸
is the normalization variable

of the engine’s speed, fuel(𝛽
𝐸
) is the fuel consumption rate

under the variable 𝛽
𝐸
, and 𝑎

𝑖
is the fitting coefficient, 𝑖 =

1, . . . , 𝑛.
Moreover, the engine’s maximum torque is also a nonlin-

ear function of its speed. The data fitting is done by using the
piecewise function as

𝑇
𝐸max (𝜔𝐸) =

{

{

{

𝑏0 + 𝑏1𝜔𝐸 0 ≤ 𝜔
𝐸
≤ 𝜔
𝐸0

𝑐0 + 𝑐1𝜔𝐸 + 𝑐2𝜔
2
𝐸

𝜔
𝐸0 ≤ 𝜔𝐸 ≤ 𝜔𝐸max,

(2)

where 𝑇
𝐸max(𝜔𝐸) is the engine’s maximum torque when its

speed is 𝜔
𝐸
, 𝜔
𝐸0 is the engine’s idling speed, and 𝑏0, 𝑏1, 𝑐0,

𝑐1, and 𝑐2 are the fitting coefficients of the engine’s external
characteristic curve.
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Figure 4: Efficiency map of the MGs.

The MGs’ efficiency map, based on the experimental
results, is shown in Figure 4. It is a nonlinear function of
the MGs’ torque and speed. As the four quadrants basically
have the symmetric characteristic, taking the first quadrant as
example, the surface fitting is carried out by using themethod
of least square with the expression

𝜆
𝑀
=

𝜔
𝑀

𝜔
𝑀max

,

𝛾
𝑀
=

𝑇
𝑀

𝑇
𝑀max

,

𝜂
𝑀
(𝜆
𝑀
, 𝛾
𝑀
) =

𝑛

∑

𝑖,𝑗=0
𝑏
𝑖𝑗
𝜆
𝑖

𝑀
𝛾
𝑗

𝑀
,

(3)

where 𝜔
𝑀

is the MGs’ speed, including MGA and MGB,
with 𝑛

𝑀max as its maximum value, 𝑇
𝑀

is the MGs’ torque
with 𝑇

𝑀max as its maximum value, 𝜆
𝑀

and 𝛾
𝑀

are the
normalization variables of the speed and the torque, with
𝜂
𝑀

as their corresponding efficiency, and 𝑏
𝑖𝑗
is the fitting

coefficient, 𝑖, 𝑗 = 1, . . . , 𝑛.
The MGs have the characteristics of constant torque at

low speed and constant power at high speed. The maximum
torque is also a nonlinear function of the MGs’ speed, as
shown in the expression

𝑇
𝑀max (𝜔𝑀) =

{{

{{

{

𝑇
𝑀0

󵄨󵄨󵄨󵄨𝜔𝑀
󵄨󵄨󵄨󵄨 ≤ 𝜔𝑀0

𝑃
𝑀0
𝜔
𝑀

𝜔
𝑀0 ≤

󵄨󵄨󵄨󵄨𝜔𝑀
󵄨󵄨󵄨󵄨 ≤ 𝜔𝑀max,

(4)

where 𝑇
𝑀max(𝜔𝑀) is the maximum torque when the MGs’

speed is 𝜔
𝑀
, and 𝜔

𝑀0 and 𝑃𝑀0 are the rated speed and the
rated power of the MGs, respectively.

The inherent resistance model is adopted to describe the
working characteristics of the battery pack. The equation of
its state of charge (SOC) can be written as

𝑑

𝑑𝑡
𝑆 (𝑡) =

√𝐸2
𝑏
− 4𝑃
𝑏 (𝑡) 𝑅𝑏 − 𝐸𝑏

7200𝐶
𝑏
𝑅
𝑏

,

𝑆 (0) = 𝑆0,

(5)

where 𝐸
𝑏
is the open-circuit voltage, 𝑅

𝑏
is the inherent

resistance, 𝐶
𝑏
is the capacity (Ah), 𝑃

𝑏
(𝑡) is the power, 𝑆(𝑡) is

the SOC, and 𝑆0 is the initial value of the SOC.
The voltage of the DC bus is a vital parameter of the

electrical system; the equation of which is presented as

𝑈 (𝑡) =

√𝐸2
𝑏
− 4𝑃
𝑏 (𝑡) 𝑅𝑏 + 𝐸𝑏

2
.

(6)

Thus, the SOC of the battery pack and the voltage of
the DC bus are both nonlinear functions of the battery’s
power 𝑃

𝑏
(𝑡). Also, the inherent resistance 𝑅

𝑏
and the open-

circuit voltage 𝐸
𝑏
are nonlinear functions of the SOC and the

temperature. The nonlinear fitting could also be carried out
by using the experimental data.

2.3. Coupling Interaction. If neglecting the elastic deforma-
tion and the gears’ clearance of the coupling mechanism, the
speed equation of the components can be presented in the
form

[
𝜔
𝐴

𝜔
𝐵

] = [
𝑐11 𝑐12

𝑐21 𝑐22
][
𝜔
𝐼

𝜔
𝑂

] , (7)

where 𝜔
𝐴
, 𝜔
𝐵
, 𝜔
𝐼
, and 𝜔

𝑂
represent the speed ofMGA,MGB,

the input shaft, and the output shaft, respectively, and 𝑐11, 𝑐12,
𝑐21, and 𝑐22 are the speed coefficients as determined by the
operatingmode of the EMT system and the parameters of the
planetary.

When the clutch C is released and the brake D is engaged,
the system operates in the EVT1 mode, with the speed
coefficients as

𝑐11 =
(1 + 𝑘1) (1 + 𝑘2)

𝑘1𝑘2
,

𝑐12 = −
(1 + 𝑘1 + 𝑘2) (1 + 𝑘3)

𝑘1𝑘2
,

𝑐21 = 0,

𝑐22 = 1+ 𝑘3,

(8)

where 𝑘1, 𝑘2, and 𝑘3 are the planetary gears’ characteristic
parameters that are determined by the ratio of gear teeth, as
shown in Table 1.When the clutch C is engaged and the brake
D is released, the system operates in the EVT2mode, with the
speed coefficients as

𝑐11 = −
1 + 𝑘2
𝑘1

,

𝑐12 =
1 + 𝑘1 + 𝑘2

𝑘1
,
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𝑐21 = 1+ 𝑘2,

𝑐22 = − 𝑘2.

(9)

The engine connects with the input shaft through the
front gears, and the wheels connect with the output shaft
through the rear gearbox. Their speed relations are

𝜔
𝐼
=
𝜔
𝐸

𝑖
𝑓

,

𝜔
𝑂
=
V𝑖
𝑟

𝑟
𝑤

,

(10)

where 𝑖
𝑓
is the front-gear ratio, that is, the ratio from the

engine to the input shaft, V is the vehicle’s speed, 𝑟
𝑤
is the

wheels’ radius, and 𝑖
𝑟
is the rear-gear ratio, that is, the ratio

from the output shaft to the wheels.
As the rotary inertia of the planetary gears is relatively

small and the power loss of the coupling mechanism is very
little, the effects of these two factors are neglected, with the
torque equation of the system as

[
𝑇
𝐼

𝑇
𝑂

] = [
−𝑐11 −𝑐21

𝑐12 𝑐22
][
𝑇
𝐴

𝑇
𝐵

] , (11)

where𝑇
𝐴
,𝑇
𝐵
,𝑇
𝐼
, and𝑇

𝑂
represent the torques ofMGA,MGB,

the input shaft, and the output shaft, respectively.
The dynamic equations of the engine and the vehicle

could be expressed as

𝐽
𝐸

𝑑𝜔
𝐸

𝑑𝑡
= 𝑇
𝐸
−
𝑇
𝐼

𝑖
𝑓
𝜂
𝑓

,

𝑚
𝑑V
𝑑𝑡
=
𝑇
𝑂
𝑖
𝑟
𝜂
𝑟
+ 𝑇
𝐾

𝑟
𝑤

−𝐹
𝑔
,

(12)

where 𝐽
𝐸
is the rotary inertia of the engine, 𝑇

𝐸
is the torque of

the engine, 𝜂
𝑓
is the transmission efficiency of the front gears,

𝑚 is the curb weight of the vehicle, 𝜂
𝑟
is the transmission

efficiency of the rear gearbox, 𝑇
𝐾
is the braking torque on the

wheels, and 𝐹
𝑔
is the driving resistance from the ground and

the air.
The power equation of the electrical components is

𝑃
𝑏
= 𝑇
𝐴
𝜔
𝐴
𝜇
𝐴
+𝑇
𝐵
𝜔
𝐵
𝜇
𝐵
+𝑃
𝑐
, (13)

where 𝑃
𝑐
is the total power of the electric appliances and 𝜇

𝐴

and 𝜇
𝐵
are the power factors of the MGs presented as

𝜇
𝐴
=
{

{

{

1
𝜂
𝐴

𝑇
𝐴
𝜔
𝐴
≥ 0

𝜂
𝐴

𝑇
𝐴
𝜔
𝐴
< 0,

𝜇
𝐵
=
{

{

{

1
𝜂
𝐵

𝑇
𝐵
𝜔
𝐵
≥ 0

𝜂
𝐵

𝑇
𝐵
𝜔
𝐵
< 0,

(14)

where 𝜂
𝐴
and 𝜂
𝐵
are the efficiencies of the two MGs.

To sum up, the engine, the MGs, and the battery pack all
have strong nonlinear characteristics, and they are coupled
together by the EMT system. Therefore, the EMT system is a
nonlinear-coupling system.

3. Multiobjective Dynamic
Optimization Model

The standard form of a nonlinear dynamic optimization
model can be presented as

min 𝑓 (𝑥, 𝑢, 𝑤, 𝑡) ,

s.t. 𝑥̇ = 𝑔 (𝑥, 𝑢, 𝑤, 𝑡) ,

ℎ (𝑥, 𝑢, 𝑤, 𝑡) = 0,

𝑝 (𝑥, 𝑢, 𝑤, 𝑡) ≤ 0,

(15)

where 𝑥, 𝑢, 𝑤, and 𝑡 represent the state vector, the control
vector, the random vector, and the time, 𝑓(𝑥, 𝑢, 𝑤, 𝑡) is cost
function, 𝑥̇ = 𝑔(𝑥, 𝑢, 𝑤, 𝑡) is dynamic model of the system,
and ℎ(𝑥, 𝑢, 𝑤, 𝑡) = 0 and 𝑝(𝑥, 𝑢, 𝑤, 𝑡) ≤ 0 are equality and
inequality constraints, respectively.

In the EMT system, the variables can be expressed as

𝑥 = (𝜔
𝐸
, 𝜔
𝐴
, 𝜔
𝐵
, V, 𝑆)𝑇 ,

𝑢 = (𝑇
𝐸
, 𝑇
𝐴
, 𝑇
𝐵
, 𝑇
𝐾
)
𝑇
,

𝑤 = (𝐹
𝑔
, 𝑃
𝑐
)
𝑇

.

(16)

Thus, the state variables include the engine speed, the
two MG speeds, the vehicle speed, and the battery SOC;
the control variables include the engine torque, the two MG
torques, and the braking torque; the randomvariables include
the driving resistance and the power of the electric appliances,
which can be expressed as

𝐹
𝑔
= 𝐹
𝑔
+ 𝛿𝐹
𝑔
,

𝑃
𝑐
= 𝑃̂
𝑐
+ 𝛿𝑃
𝑐
,

(17)

where 𝐹
𝑔
and 𝑃̂
𝑐
are the mean value of 𝐹

𝑔
and 𝑃
𝑐
, 𝛿𝐹
𝑔
, and 𝛿𝑃

𝑐

are white noises, with their mean value as

𝐸 (𝛿𝐹
𝑔
) = 0,

𝐸 (𝛿𝑃
𝑐
) = 0.

(18)

3.1. Multiple Optimization Objectives. The control strategy of
the HEV is a multiobjective optimization problem with the
cost functions as

𝐽
𝐷
= ∫

𝑡0+Δ𝑡

𝑡0

𝐿
𝐷 [𝑥 (𝑡) , 𝑢 (𝑡) , 𝑤 (𝑡) , 𝑡] 𝑑𝑡,

𝐽
𝐸
= ∫

𝑡0+Δ𝑡

𝑡0

𝐿
𝐸 [𝑥 (𝑡) , 𝑢 (𝑡) , 𝑤 (𝑡) , 𝑡] 𝑑𝑡,

𝐽
𝐹
= ∫

𝑡0+Δ𝑡

𝑡0

𝐿
𝐹 [𝑥 (𝑡) , 𝑢 (𝑡) , 𝑤 (𝑡) , 𝑡] 𝑑𝑡,

(19)

where 𝐿
𝐷
, 𝐿
𝐸
, and 𝐿

𝐹
are the index functions of the

drivability, the current supply capacity, and the fuel economy,
𝑡0 is the initial time, and Δ𝑡 is the time step.
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3.1.1. Drivability. The EMT system transmits the engine’s
power to the wheels to drive the vehicle.With the same power
of the engine, which is determined by the driver’s pedals,
the more power is transmitted to the wheels; that is, the less
the power will be lost, the better the vehicle’s drivability will
be. Therefore, the index function of the drivability can be
expressed as

𝐿
𝐷
= 𝑃
𝐸 (𝑡) − 𝑃𝐷 (𝑡) = 𝑇𝐸 (𝑡) 𝜔𝐸 (𝑡) − 𝑇𝑂 (𝑡) 𝜔𝑂 (𝑡) 𝜂𝑟, (20)

where 𝑃
𝐸
(𝑡) is the power of the engine and 𝑃

𝐷
(𝑡) is the total

power of the wheels at the time 𝑡.
The power 𝑃

𝐷
(𝑡) can be obtained from (10), (11), and (20),

so the index function of 𝐿
𝐷
is

𝐿
𝐷
= 𝑇
𝐸
(𝑡) 𝜔
𝐸
(𝑡) −

𝑖
𝑟
𝜂
𝑟

3.6𝑟
𝑤

[𝑐12𝑇𝐴 (𝑡) + 𝑐22𝑇𝐵 (𝑡)] V (𝑡) . (21)

Thus, the drivability is a nonlinear function of the state
variables 𝜔

𝐸
, V and control variables 𝑇

𝐸
, 𝑇
𝐴
, and 𝑇

𝐵
.

3.1.2. Current Supply Capacity. The EMT system can sup-
ply electrical power to meet the electricity demand of the
appliances. The smaller the difference between the electricity
supply and the demand is, the better the current supply
capacity will be. Thus, the index function of the current
supply capacity can be expressed as

𝐿
𝐸
=
󵄨󵄨󵄨󵄨𝑃𝑁 (𝑡) − 𝑃𝐴𝐵 (𝑡)

󵄨󵄨󵄨󵄨 , (22)

where 𝑃
𝑁
(𝑡) is the electricity demand from the electric

appliances and the battery pack and 𝑃
𝐴𝐵
(𝑡) is the electricity

supply from the two MGs.
To guarantee the cycle life of the battery pack, it is better

to keep its SOC at around the ideal value. Thus, the power
need of the battery pack is a function of its SOC, which can
be represented by the cubic curve as

𝑃
𝑏0 (𝑡) = 𝑑𝑏 [𝑆idl − 𝑆 (𝑡)]

3
, (23)

where 𝑃
𝑏0 is the battery pack’s power demand, 𝑆idl is its ideal

SOC, and 𝑑
𝑏
is the charge-discharge factor.

The overall power demand from the battery pack and the
electric appliances is presented in the form of

𝑃
𝑁 (𝑡) = 𝑃𝑏0 (𝑡) + 𝑃𝑐 (𝑡) . (24)

The two MGs can supply electricity at the same time, or
one MG supplies electricity while the other is driving the
vehicle. The overall power supply is expressed in the form of

𝑃
𝐴𝐵 (𝑡) = −𝑇𝐴 (𝑡) 𝜔𝐴 (𝑡) 𝜇𝐴 −𝑇𝐵 (𝑡) 𝜔𝐵 (𝑡) 𝜇𝐵, (25)

where 𝜇
𝐴
and 𝜇

𝐵
are the nonlinear functions of the MG’s

speed and torque, respectively. Besides, the power𝑇
𝐴
(𝑡)𝜔
𝐴
(𝑡)

and power 𝑇
𝐵
(𝑡)𝜔
𝐵
(𝑡) are defined to be positive when the

MGs consume electricity; otherwise, they are negative when
the MGs produce electricity.

Combining (22), (23), (24), and (25), the index function
of the current supply capacity can be presented as

𝐿
𝐸
=
󵄨󵄨󵄨󵄨󵄨
𝑇
𝐴 (𝑡) 𝜔𝐴 (𝑡) 𝜇𝐴 +𝑇𝐵 (𝑡) 𝜔𝐵 (𝑡) 𝜇𝐵 +𝑃𝑐 (𝑡)

+ 𝑑
𝑏
[𝑆idl − 𝑆 (𝑡)]

3󵄨󵄨󵄨󵄨󵄨 .
(26)

Thus, the current supply capacity is a nonlinear function
of the state variables 𝜔

𝐴
, 𝜔
𝐵
, 𝑆, the control variables 𝑇

𝐴
, 𝑇
𝐵
,

and the random variable 𝑃
𝑐
.

3.1.3. Fuel Economy. The less the engine’s fuel consumption
is, the better the fuel economy will be. Its index function is
presented as

𝐿
𝐹
= 𝑇
𝐸 (𝑡) 𝜔𝐸 (𝑡) fuel (𝑡) . (27)

Equation (1) shows the relationship between the fuel
consumption and the engine’s speeds under several power
levels. The linear interpolation of the adjacent curves can be
carried out as

fuel (𝑡)

=
𝑇
𝐸
𝜔
𝐸
− 𝑃
𝐸2

𝑃
𝐸1 − 𝑃𝐸2

[𝑎10 + 𝑎11
𝜔
𝐸

𝜔
𝐸max

+ 𝑎12 (
𝜔
𝐸

𝜔
𝐸max

)

2
]

+
𝑇
𝐸
𝜔
𝐸
− 𝑃
𝐸1

𝑃
𝐸2 − 𝑃𝐸1

[𝑎20 + 𝑎21
𝜔
𝐸

𝜔
𝐸max

+ 𝑎22 (
𝜔
𝐸

𝜔
𝐸max

)

2
] ,

(28)

where 𝑃
𝐸1 and 𝑃𝐸2 are the power values of the given curves

beside 𝑇
𝐸
𝜔
𝐸
.

Thus, the fuel economy is a nonlinear function of the state
variable 𝜔

𝐸
and the control variable 𝑇

𝐸
.

3.2. Dynamic Model of the EMT System. The usual form to
present a dynamic model is

(
(
(
(
(

(

𝑑𝑥1
𝑑𝑡

𝑑𝑥2
𝑑𝑡
.
.
.

𝑑𝑥
𝑛

𝑑𝑡

)
)
)
)
)

)

=(

𝑓1 (𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑢1)

𝑓2 (𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑢2)

.

.

.

𝑓
𝑛
(𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑢𝑛)

), (29)

where𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is the state vector, 𝑡 represents time,
and 𝑢

𝑖
are vectors representing input functions.

In the EMT system, the variables have been identified
after the dynamic optimization model (15), and the dynamic
equations can be listed as

𝑑𝜔
𝐸 (𝑡)

𝑑𝑡
=

1
𝐽
𝐸

𝑇
𝐸 (𝑡) +

𝑐11
𝐽
𝐸
𝑖
𝑓
𝜂
𝑓

𝑇
𝐴 (𝑡) +

𝑐21
𝐽
𝐸
𝑖
𝑓
𝜂
𝑓

𝑇
𝐵 (𝑡) , (30)
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𝑑𝜔
𝐴 (𝑡)

𝑑𝑡
=
𝑐11
𝐽
𝐸
𝑖
𝑓

𝑇
𝐸 (𝑡) +(

𝑐
2
11

𝐽
𝐸
𝑖2
𝑓
𝜂
𝑓

+
𝑐
2
12𝑖

2
𝑟
𝜂
𝑟

𝑚𝑟2
𝑤

)𝑇
𝐴 (𝑡)

+(
𝑐11𝑐21
𝐽
𝐸
𝑖2
𝑓
𝜂
𝑓

+
𝑐12𝑐22𝑖

2
𝑟
𝜂
𝑟

𝑚𝑟2
𝑤

)𝑇
𝐵 (𝑡)

+
𝑐12𝑖𝑟
𝑚𝑟2
𝑤

𝑇
𝐾 (𝑡) −

𝑐
2
12𝑖𝑟
𝑚𝑟
𝑤

𝐹
𝑔 (𝑡) ,

(31)

𝑑𝜔
𝐵 (𝑡)

𝑑𝑡
=
𝑐21
𝐽
𝐸
𝑖
𝑓

𝑇
𝐸 (𝑡) +(

𝑐11𝑐21
𝐽
𝐸
𝑖2
𝑓
𝜂
𝑓

+
𝑐12𝑐22𝑖

2
𝑟
𝜂
𝑟

𝑚𝑟2
𝑤

)𝑇
𝐴 (𝑡)

+(
𝑐
2
21

𝐽
𝐸
𝑖2
𝑓
𝜂
𝑓

+
𝑐
2
22𝑖

2
𝑟
𝜂
𝑟

𝑚𝑟2
𝑤

)𝑇
𝐵 (𝑡)

+
𝑐22𝑖𝑟
𝑚𝑟2
𝑤

𝑇
𝐾 (𝑡) −

𝑐12𝑐22𝑖𝑟
𝑚𝑟
𝑤

𝐹
𝑔 (𝑡) ,

(32)

𝑑V (𝑡)
𝑑𝑡

=
𝑐12𝑖𝑟𝜂𝑟
𝑚𝑟
𝑤

𝑇
𝐴 (𝑡) +

𝑐22𝑖𝑟𝜂𝑟
𝑚𝑟
𝑤

𝑇
𝐵 (𝑡) +

1
𝑚𝑟
𝑤

𝑇
𝐾 (𝑡)

−
1
𝑚
𝐹
𝑔 (𝑡) ,

(33)

𝑑

𝑑𝑡
𝑆 (𝑡) =

√𝐸2
𝑏
− 4𝑃
𝑏 (𝑡) 𝑅𝑏 − 𝐸𝑏

7200𝐶
𝑏
𝑅
𝑏

, (34)

where (30), (31), (32), and (33) are obtained by combining the
kinematic equations (7)∼(12) and (34) is from the dynamic
model (5) of the battery pack.

The initial conditions of the state variables are

𝜔
𝐸
(𝑡0) = 𝜔𝐸0,

𝜔
𝐴
(𝑡0) = 𝜔𝐴0,

𝜔
𝐵
(𝑡0) = 𝜔𝐵0,

V (𝑡0) = V0,

𝑆 (𝑡0) = 𝑆0,

(35)

where 𝜔
𝐸0, 𝜔𝐴0, 𝜔𝐵0, and V0 can be collected by the sensors

and 𝑆0 can be obtained by the battery management sys-
tem.

It can be seen from the dynamic equations that the
dynamic models of the engine and the MGs are linear, while
the dynamic model of the battery pack is nonlinear.

3.3. Equality and Inequality Constraints. The EMT system is
a nonlinear-coupling system, and its constraints include both
the single constraints of the components (inequality con-
straints) and the coupling constraints among the components
(equality constraints).

3.3.1. Inequality Constraints. The engine, the MGs, and the
batterymust operate within their allowable ranges, as follows:

𝜔
𝐸min ≤ 𝜔𝐸 (𝑡) ≤ 𝜔𝐸max,

𝑇
𝐸min (𝜔𝐸) ≤ 𝑇𝐸 (𝑡) ≤ 𝑇𝐸max (𝜔𝐸) ,

𝜔
𝐴min ≤ 𝜔𝐴 (𝑡) ≤ 𝜔𝐴max,

𝑇
𝐴min (𝜔𝐴) ≤ 𝑇𝐴 (𝑡) ≤ 𝑇𝐴max (𝜔𝐴) ,

𝜔
𝐵min ≤ 𝜔𝐵 (𝑡) ≤ 𝜔𝐵max,

𝑇
𝐵min (𝜔𝐵) ≤ 𝑇𝐵 (𝑡) ≤ 𝑇𝐵max (𝜔𝐵) ,

𝑆min ≤ 𝑆 (𝑡) ≤ 𝑆max,

𝑈min ≤ 𝑈 (𝑡) ≤ 𝑈max,

𝑇
𝐾 (𝑡) ≤ 𝑇𝐾max (V) ,

(36)

where 𝜔
𝐸min, 𝜔𝐸max, 𝜔𝐴min, 𝜔𝐴max, 𝜔𝐵min, and 𝜔𝐵max are the

minimum and maximum speeds of the engine, MGA and
MGB, 𝑇

𝐸min, 𝑇𝐸max, 𝑇𝐴min, 𝑇𝐴max, 𝑇𝐵min, and 𝑇𝐵max are the
minimum and maximum torques of the engine, MGA and
MGB, which are nonlinear functions of their speeds, 𝑆min
and 𝑆max are the minimum and maximum allowable values
of the battery’s SOC, 𝑈min and 𝑈max are the minimum and
maximum allowable voltages of the DC bus, and 𝑇

𝐾max is the
maximum braking torque, which is a function of the vehicle
speed.

Besides, as the torque response of the engine and theMGs
requires a certain time, the control variables 𝑇

𝐸
, 𝑇
𝐴
, and 𝑇

𝐵

must meet the extra constraints as follows:

𝑇
𝐸0𝑒
−(𝑡−𝑡0)/𝜏𝐸 +𝑇

𝐸min (1− 𝑒
−(𝑡−𝑡0)/𝜏𝐸) ≤ 𝑇

𝐸 (𝑡)

≤ 𝑇
𝐸0𝑒
−(𝑡−𝑡0)/𝜏𝐸 +𝑇

𝐸max (1− 𝑒
−(𝑡−𝑡0)/𝜏𝐸) ,

𝑇
𝐴0𝑒
−(𝑡−𝑡0)/𝜏𝐴 +𝑇

𝐴min (1− 𝑒
−(𝑡−𝑡0)/𝜏𝐴) ≤ 𝑇

𝐴 (𝑡)

≤ 𝑇
𝐴0𝑒
−(𝑡−𝑡0)/𝜏𝐴 +𝑇

𝐴max (1− 𝑒
−(𝑡−𝑡0)/𝜏𝐴) ,

𝑇
𝐵0𝑒
−(𝑡−𝑡0)/𝜏𝐵 +𝑇

𝐵min (1− 𝑒
−(𝑡−𝑡0)/𝜏𝐵) ≤ 𝑇

𝐵 (𝑡)

≤ 𝑇
𝐵0𝑒
−(𝑡−𝑡0)/𝜏𝐵 +𝑇

𝐵max (1− 𝑒
−(𝑡−𝑡0)/𝜏𝐵) ,

(37)

where 𝑇
𝐸0, 𝑇𝐴0, and 𝑇𝐵0 are the torques of the engine and

the two MGs at the time 𝑡0 and 𝜏
𝐸
, 𝜏
𝐴
, and 𝜏

𝐵
are the

time constraints of the corresponding components, which are
assumed as first-order systems.

3.3.2. Equality Constraints. Combining (7) and (10), the
speed relations among the MGs, the engine, and the vehicle
can be obtained as

𝜔
𝐴 (𝑡) =

𝑐11
𝑖
𝑓

𝜔
𝐸 (𝑡) +

𝑐12𝑖𝑟
3.6𝑟
𝑤

V (𝑡) ,

𝜔
𝐵 (𝑡) =

𝑐21
𝑖
𝑓

𝜔
𝐸 (𝑡) +

𝑐22𝑖𝑟
3.6𝑟
𝑤

V (𝑡) .
(38)
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State
observation

Feedback
compensation

Optimal
decision

Controlled plantDynamic
prediction (HEV)

x(t + Δt)

x(t + Δt)

h[x(t + Δt)] = 0
x(t + Δt) = x(u)

s.t. u(t) ∈ Ω(t)

𝜉(t) = 𝜉(𝛿x)

𝜅(t) = 𝜅(𝛿x)

u(t) = f(𝜅, u∗)

ẋ(t) = g(x, u, w, t)

y(t) = q(x, u, w, t)

x̂−k = Ax̂−k−1 + Buk−1

P−
k = AP−

k−1A
T + Q

x̂k = x̂−k + Kk(zk − Hx̂−k )

Pk = (I − KkH)P−
k

Ω(u)

𝛿x = x∗(t) − x(t)

x∗(t)

u∗(t)

u(t) y(t)

w(t)𝜅(t)

x(t)

p[x(t + Δt)] ≤ 0

min f[x(t + Δt)]

Kk = P−
k H

T(HP−
k H

T + R)−1

= g[x(t), u(t), Δt]

Figure 5: Control structure diagram of the OPDC approach.

In addition, (6) represents the relation between the bus
voltage 𝑈(𝑡) and the battery pack’s power 𝑃

𝑏
(𝑡) and (13) rep-

resents the relation between the two MGs, the battery pack,
and the electric appliances’ powers, which are also equality
constraints.

4. OPDC-Based Optimal Control Approach

As the dynamic optimization model of the HEV has been
derived in Section 2, the optimal control variables can be
obtained by solving the model. However, the optimization
model (15) has strong nonlinear-coupling and time-varying
characteristics, so it is nearly impossible to solve the model
in real time by using the existing methods.Therefore, a novel
nonlinear control approach is proposed in this paper based
on the characteristics of the system.

The dynamic optimization model of the HEV system
has several characteristics: (1) the current states are available
information; (2) the future states are functions of the control
variables and the current states; (3) the cost functions, the
inequality, and equality constraints can be expressed as
functions of the future states; and (4) the future states will be
influenced by the noise variables.

Due to the first characteristic, the current states can be
obtained through the sensors or by using the state observa-
tion algorithm. The second characteristic indicates that the
future states can be predicted by using the dynamic model of
the system. Based on the third characteristic, the optimization
model (15) can be simplified in the form of

min 𝑓 [𝑥 (𝑡 +Δ𝑡)] ,

s.t. 𝑥 (𝑡 +Δ𝑡) = 𝑔 [𝑥 (𝑡) , 𝑢 (𝑡) , Δ𝑡] ,

ℎ [𝑥 (𝑡 +Δ𝑡)] = 0,

𝑝 [𝑥 (𝑡 +Δ𝑡)] ≤ 0,

(39)

where 𝑥(𝑡) is the current state, which can be taken as a known
information, and 𝑥(𝑡 + Δ𝑡) is the future state after a time step
Δ𝑡.

Moreover, because of the fourth characteristic, the impact
of the noise needs to be compensated. Based on these
characteristics of the dynamic optimization model of the
HEV system, the novel nonlinear control approach proposed

in this paper consists of the following four parts: state obser-
vation, dynamic prediction, optimal decision, and feedback
compensation, as shown in Figure 5.

Firstly, the output variable 𝑦(𝑡) of the HEV system is
collected by the sensors, so that the current state 𝑥(𝑡) can be
estimated through the state observation algorithm. Secondly,
the future state 𝑥(𝑡 + Δ𝑡) is predicted, and the feasible region
Ω(𝑢) of the control variable 𝑢(𝑡) is obtained through the
dynamic prediction algorithm based on the dynamic models
and the constraints. Then, the optimal control variable 𝑢∗(𝑡)
and its corresponding state variable 𝑥∗(𝑡 + Δ𝑡) are achieved
through the optimal decision algorithm based on the mul-
tiobjective optimization. Lastly, the feedback compensation
to the model parameters and the control parameters is done
by utilizing the deviation between the optimal state variable
𝑥
∗
(𝑡) and the actual state variable 𝑥(𝑡), and the final control

variable 𝑢(𝑡) is applied to the HEV system.

4.1. State Observation. In the vehicle control area, such
signals as the location, oil pressure, speed, and voltage can
be collected by the sensors. As the torque sensor is too large,
it is rarely used in the vehicles. Additionally, the driving
resistance and SOC cannot be measured. Therefore, the state
observation algorithm is utilized to obtain these variables.

As the response time of the two MGs (about 2ms)
is shorter than the sampling time of the control system
(20ms), it can be assumed that the initial torques of the MGs
approximate to their expected values

𝑇
𝐴0 ≈ 𝑇𝐴 (𝑘 − 1) ,

𝑇
𝐵0 ≈ 𝑇𝐵 (𝑘 − 1) ,

(40)

where 𝑇
𝐴
(𝑘 − 1) and 𝑇

𝐵
(𝑘 − 1) are the control variables at the

last sampling time.
Thus, the initial torques of the MGs are known informa-

tion, which can be used to estimate the torque of the engine
and the driving resistance of the vehicle.

The experimental results of the engine are shown in
Figures 6 and 7. The diesel engine’s expected speed is the
control objective, while the actual speed follows.The engine’s
torque changes to realize the speed adjustment.The response
time of the engine’s torque is about 1200ms, which is much
longer than the sampling time of the control system (20ms).



www.manaraa.com

Mathematical Problems in Engineering 9

0 20 40 60 80 100 120 140
0

50

100

150

200

250

Time (s)

En
gi

ne
 sp

ee
d 

(r
ad

/s
)

Expected speed
Actual speed

Figure 6: Speed results of the engine experiment.

Thus, the engine’s torque changes a little during the sampling
time. As a result, the state observation can be used to

approximate the engine’s actual torque, which is necessary to
determine the range of the control variable 𝑇

𝐸
.

The Kalman filter is a set of mathematical equations
that provide an efficient computational (recursive) means to
estimate the state of a process, in a way that minimizes the
mean of the squared error [31]. The state observation of the
engine’s torque and the vehicle’s resistance was carried out in
this paper based on the Kalman filtering algorithm.

The dynamic equations (30)∼(33) can be expressed in the
discrete form of

𝑥0 (𝑘) = 𝐴0𝑥0 (𝑘 − 1) + 𝐵0𝑢0 (𝑘 − 1) , (41)

where 𝑥0 = (𝜔
𝐸
, 𝜔
𝐴
, 𝜔
𝐵
, V)𝑇 is the speed vector, 𝑢0 = (𝑇

𝐸
,

𝑇
𝐴
, 𝑇
𝐵
, 𝑇
𝐾
, 𝐹
𝑔
)
𝑇 is the torque/force vector, and 𝐴0 and 𝐵0 are

the speed and torque coefficient matrix as follows:

𝐴0 = 𝐼4 =
[
[
[

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
]
]

]

,

𝐵0 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1
𝐽
𝐸

𝑐11
𝐽
𝐸
𝑖
𝑓
𝜂
𝑓

𝑐21
𝐽
𝐸
𝑖
𝑓
𝜂
𝑓

0 0

𝑐11
𝐽
𝐸
𝑖
𝑓

𝑐
2
11

𝐽
𝐸
𝑖2
𝑓
𝜂
𝑓

+
𝑐
2
12𝑖

2
𝑟
𝜂
𝑟

𝑚𝑟2
𝑤

𝑐11𝑐21
𝐽
𝐸
𝑖2
𝑓
𝜂
𝑓

+
𝑐12𝑐22𝑖

2
𝑟
𝜂
𝑟

𝑚𝑟2
𝑤

𝑐12𝑖𝑟
𝑚𝑟2
𝑤

−
𝑐
2
12𝑖𝑟
𝑚𝑟
𝑤

𝑐21
𝐽
𝐸
𝑖
𝑓

𝑐11𝑐21
𝐽
𝐸
𝑖2
𝑓
𝜂
𝑓

+
𝑐12𝑐22𝑖

2
𝑟
𝜂
𝑟

𝑚𝑟2
𝑤

𝑐
2
21

𝐽
𝐸
𝑖2
𝑓
𝜂
𝑓

+
𝑐
2
22𝑖

2
𝑟
𝜂
𝑟

𝑚𝑟2
𝑤

𝑐22𝑖𝑟
𝑚𝑟2
𝑤

−
𝑐12𝑐22𝑖𝑟
𝑚𝑟
𝑤

0
𝑐12𝑖𝑟𝜂𝑟
𝑚𝑟
𝑤

𝑐22𝑖𝑟𝜂𝑟
𝑚𝑟
𝑤

1
𝑚𝑟
𝑤

−
1
𝑚

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

Δ𝑡.

(42)

Based on the discrete equation (41) of the EMT system,
the state equation and the output equation of the observation
system can be obtained in the form of

𝑥1 (𝑘) = 𝐴1𝑥1 (𝑘 − 1) + 𝐵1𝑢1 (𝑘 − 1) +𝑤1 (𝑘 − 1) , (43)

𝑦1 (𝑘) = 𝐻𝑥1 (𝑘) + V1 (𝑘) , (44)

where 𝑥1 = (𝜔̂
𝐸
, V̂
𝐾
, 𝑇̂
𝐸
, 𝐹
𝑔
)
𝑇 is the state vector of the

observation system, 𝑢1 = (𝑇
𝐴
, 𝑇
𝐵
, 𝑇
𝐾
)
𝑇 is the input vector,

𝑤1 = (𝛿𝜔𝐸, 𝛿V, 𝛿𝑇𝐸, 𝛿𝐹𝑔)
𝑇 is the process noise vector, 𝑦1 =

(𝜔
𝐸
, 𝜔
𝐴
, 𝜔
𝐵
, V
𝐾
)
𝑇 is the output vector, V1 = (𝛿

󸀠
𝜔
𝐸
, 𝛿
󸀠
𝜔
𝐴
, 𝛿
󸀠
𝜔
𝐵
,

𝛿
󸀠V)𝑇 is themeasurement noise vector, and𝐴1,𝐵1, and𝐻1 are

the system matrix, the input matrix, and the output matrix,

which can be obtained by using the elements of matrix 𝐴0
and 𝐵0 as follows:

𝐴1 =
[
[
[
[

[

𝐴0 (1, 1) 𝐴0 (1, 4) 𝐵0 (1, 1) 𝐵0 (1, 5)
𝐴0 (4, 1) 𝐴0 (4, 4) 𝐵0 (4, 1) 𝐵0 (4, 5)

1 0 0 0
0 1 0 0

]
]
]
]

]

,

𝐵1 =
[
[
[
[

[

𝐵0 (1, 2) 𝐵0 (1, 3) 𝐵0 (1, 4)
𝐵0 (4, 2) 𝐵0 (4, 3) 𝐵0 (4, 4)

0 0 0
0 0 0

]
]
]
]

]

,

𝐻1 =

[
[
[
[
[
[
[
[
[

[

1 0 0 0
𝑐11
𝑖
𝑓

𝑐12𝑖𝑟
𝑟
𝑤

0 0

𝑐21
𝑖
𝑓

𝑐22𝑖𝑟
𝑟
𝑤

0 0

0 1 0 0

]
]
]
]
]
]
]
]
]

]

.

(45)
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Figure 7: Torque results of the engine experiment.

Based on the observation system’s state equation (43) and
output equation (44), the engine’s torque and the vehicle’s
resistance can be achieved by using the Kalman filtering
algorithm. Moreover, the SOC of the battery pack can also
be estimated using the Kalman filtering algorithm [32].

4.2. Dynamic Prediction. To obtain the future states and get
the feasible region of the control variables, the dynamic pre-
diction algorithm can be designed as follows.

Step 1. The torque ranges of the two MGs are calculated
according to their current speeds, expressed as

𝑇
𝐴max 0 (𝜔̂𝐴) =

{{

{{

{

𝑇
𝐴0

󵄨󵄨󵄨󵄨𝜔̂𝐴
󵄨󵄨󵄨󵄨 ≤ 𝜔𝐴0

𝑃
𝐴0
𝜔̂
𝐴

𝜔
𝐴0 ≤

󵄨󵄨󵄨󵄨𝜔̂𝐴
󵄨󵄨󵄨󵄨 ≤ 𝜔𝐴max,

𝑇
𝐵max 0 (𝜔̂𝐵) =

{{

{{

{

𝑇
𝐵0

󵄨󵄨󵄨󵄨𝜔̂𝐵
󵄨󵄨󵄨󵄨 ≤ 𝜔𝐵0

𝑃
𝐵0
𝜔̂
𝐵

𝜔
𝐵0 ≤

󵄨󵄨󵄨󵄨𝜔̂𝐵
󵄨󵄨󵄨󵄨 ≤ 𝜔𝐵max,

𝑇
𝐴min 0 (𝜔̂𝐴) = −𝑇𝐴max 0 (𝜔̂𝐴) ,

𝑇
𝐵min 0 (𝜔̂𝐵) = −𝑇𝐵max 0 (𝜔̂𝐵) ,

(46)

where 𝜔̂
𝐴
and 𝜔̂

𝐵
are the current speeds of the two MGs,

which can be obtained by the sensors.

Step 2. The search ranges of the control variable 𝑇
𝐴

are
calculated according to its dynamic model, expressed as

𝑇
𝐴max = 𝑇𝐴0𝑒

−Δ𝑡/𝜏𝐴 +𝑇
𝐴max 0 (1− 𝑒

−Δ𝑡/𝜏𝐴) ,

𝑇
𝐴min = 𝑇𝐴0𝑒

−Δ𝑡/𝜏𝐴 +𝑇
𝐴min 0 (1− 𝑒

−Δ𝑡/𝜏𝐴) .

(47)

Step 3. According to the control accuracy of the MGA,
the linear search of the control variable 𝑇

𝐴
is carried out,

and its corresponding efficiency is calculated, expressed
as

𝑇
𝐴𝑝
∈ [𝑇
𝐴min, 𝑇𝐴max] , 𝑝 = 1, 2, . . . , 𝑛1,

𝜂
𝐴𝑝
=

𝑛

∑

𝑖,𝑗=0
𝑏
𝑖𝑗
[
𝜔̂
𝐴

𝜔
𝐴max

]

𝑖

[
𝑇
𝐴𝑝

𝑇
𝐴max

]

𝑗

,

𝜇
𝐴𝑝
=
{

{

{

1
𝜂
𝐴𝑝

𝑇
𝐴𝑝
𝜔̂
𝐴
≥ 0

𝜂
𝐴𝑝

𝑇
𝐴𝑝
𝜔̂
𝐴
< 0,

(48)

where 𝑝 is the serial number and 𝑛1 is the amount of the
search variables 𝑇

𝐴𝑝
.

Step 4. According to the voltage constraints of the DC bus,
the torque ranges of MGB are calculated, expressed as

𝑃
𝑏min =

𝐸
𝑏

𝑅
𝑏

𝑈max −
1
𝑅
𝑏

𝑈
2
max,

𝑃
𝑏max =

𝐸
𝑏

𝑅
𝑏

𝑈min −
1
𝑅
𝑏

𝑈
2
min,

𝑇
𝐵min 1 =

{{{{{

{{{{{

{

𝑃
𝑏min − 𝑃̂𝑐 − 𝑇𝐴𝑝𝜔̂𝐴𝜇𝐴𝑝

𝜔̂
𝐵
𝜇
𝐵

𝜔̂
𝐵
≥ 0

𝑃
𝑏max − 𝑃̂𝑐 − 𝑇𝐴𝑝𝜔̂𝐴𝜇𝐴𝑝

𝜔̂
𝐵
𝜇
𝐵

𝜔̂
𝐵
< 0,

𝑇
𝐵max 1 =

{{{{{

{{{{{

{

𝑃
𝑏max − 𝑃̂𝑐 − 𝑇𝐴𝑝𝜔̂𝐴𝜇𝐴𝑝

𝜔̂
𝐵
𝜇
𝐵

𝜔̂
𝐵
≥ 0

𝑃
𝑏min − 𝑃̂𝑐 − 𝑇𝐴𝑝𝜔̂𝐴𝜇𝐴𝑝

𝜔̂
𝐵
𝜇
𝐵

𝜔̂
𝐵
< 0,

(49)

where 𝑃̂
𝑐
is the current power of the electric appliances and

𝜇
𝐵
is calculated by iterative algorithm.

Step 5. The research ranges of the control variable 𝑇
𝐵
are

calculated according to its dynamic model, expressed as

𝑇
𝐵max 2 = 𝑇𝐵0𝑒

−Δ𝑡/𝜏𝐵 +𝑇
𝐵max 0 (1− 𝑒

−Δ𝑡/𝜏𝐵) ,

𝑇
𝐵min 2 = 𝑇𝐵0𝑒

−Δ𝑡/𝜏𝐵 +𝑇
𝐵min 0 (1− 𝑒

−Δ𝑡/𝜏𝐵) ,

𝑇
𝐵min = max [𝑇

𝐵min 1, 𝑇𝐵min 2] ,

𝑇
𝐵max = min [𝑇

𝐵max 1, 𝑇𝐵max 2] .

(50)

Step 6. According to the control accuracy of the MGB, the
linear research of the control variable 𝑇

𝐵
is carried out, and

its corresponding efficiency is calculated, expressed as

𝑇
𝐵𝑞
∈ [𝑇
𝐵min, 𝑇𝐵max] , 𝑞 = 1, 2, . . . , 𝑛2,

𝜂
𝐵𝑞
=

𝑛

∑

𝑖,𝑗=0
𝑏
𝑖𝑗
[
𝜔̂
𝐵

𝜔
𝐵max

]

𝑖

[
𝑇
𝐵𝑞

𝑇
𝐵max

]

𝑗

,

𝜇
𝐵𝑞
=
{

{

{

1
𝜂
𝐵𝑞

𝑇
𝐵𝑞
𝜔̂
𝐵
≥ 0

𝜂
𝐵𝑞

𝑇
𝐵𝑞
𝜔̂
𝐵
< 0,

(51)
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where 𝑞 is the serial number and 𝑛2 is the amount of the
search variables 𝑇

𝐵𝑞
.

Step 7. According to the dynamic model, the future speeds
of the engine and the two MGs are predicted. The speed
constraints are analyzed hierarchically, expressed as

𝜔
𝐸 (𝑡) = 𝜔̂𝐸 +

1
𝐽
𝐸

𝑇̂
𝐸
Δ𝑡

+
1

𝐽
𝐸
𝑖
𝑞
𝜂
𝑞

[𝑐11𝑇𝐴𝑝 + 𝑐21𝑇𝐵𝑞] Δ𝑡,

constraint: 𝜔
𝐸min ≤ 𝜔̂𝐸 (𝑡) ≤ 𝜔𝐸max;

V (𝑡) =
𝑖
𝑟
𝜂
𝑟

𝑚𝑟
𝑤

[𝑐12𝑇𝐴𝑝 + 𝑐22𝑇𝐵𝑞] Δ𝑡 + V̂

−
1
𝑚
𝐹
𝑔
Δ𝑡,

𝜔
𝐴 (𝑡) =

𝑐11
𝑖
𝑓

𝜔
𝐸 (𝑡) +

𝑐12𝑖𝑟
3.6𝑟
𝑤

V (𝑡) ,

constraint: 𝜔
𝐴min ≤ 𝜔𝐴 (𝑡) ≤ 𝜔𝐴max;

𝜔
𝐵 (𝑡) =

𝑐21
𝑖
𝑓

𝜔
𝐸 (𝑡) +

𝑐22𝑖𝑟
3.6𝑟
𝑤

V (𝑡) ,

constraint: 𝜔
𝐵min ≤ 𝜔𝐵 (𝑡) ≤ 𝜔𝐵max,

(52)

where V̂ is the current speed of the vehicle and 𝑇̂
𝐸
and 𝐹

𝑔
are

the current engine torque and driving resistance, which have
been obtained through the state observation.

Step 8. According to the dynamic model of the battery, the
future SOC is calculated, and whether or not it meets the
constraints is also judged, expressed as

𝑃
𝑏 (𝑡) = 𝑃̂𝑐 +𝑇𝐴𝑝𝜔𝐴 (𝑡) 𝜇𝐴𝑝

+𝑇
𝐵𝑞
𝜔
𝐵 (𝑡) 𝜇𝐵𝑞,

𝑆 (𝑡) = 𝑆 +

√𝐸2
𝑏
− 4𝑃
𝑏 (𝑡) 𝑅𝑏 − 𝐸𝑏

7200𝐶
𝑏
𝑅
𝑏

Δ𝑡,

constraint: 𝑆min ≤ 𝑆 (𝑡) ≤ 𝑆max.

(53)

Step 9. If any of the constraints failed to be satisfied, the con-
trol variables are infeasible.Then the subsequent calculations
are stopped, and the process turns to Step 10.

If all the constraints are fulfilled, the control variables are
feasible. Then the control variables 𝑇

𝐴𝑝
and 𝑇

𝐵𝑞
are added to

the feasible regionΩ, and the responding states are saved.

Step 10. Identify whether 𝑞 < 𝑛2.
If so, then 𝑞 = 𝑞 + 1, and the process turns to Step 6.
If not, identify whether 𝑝 < 𝑛1.
If so, then 𝑝 = 𝑝 + 1, and turn to Step 3.
If not, stop the calculation.

4.3. Optimal Decision. As the optimization objectives of the
HEV system are all functions of the state variables and the
sampling time of the controller is short enough, the integral
functions (19) can be approximated using the trapezoid
formula, expressed as

𝐽
𝐷
=
𝐿
𝐷
[𝑥 (𝑡0)] + 𝐿𝐷 [𝑥 (𝑡𝑓)]

2
(𝑡
𝑓
− 𝑡0) ,

𝐽
𝐸
=
𝐿
𝐸
[𝑥 (𝑡0)] + 𝐿𝐸 [𝑥 (𝑡𝑓)]

2
(𝑡
𝑓
− 𝑡0) ,

𝐽
𝐹
=
𝐿
𝐹
[𝑥 (𝑡0)] + 𝐿𝐹 [𝑥 (𝑡𝑓)]

2
(𝑡
𝑓
− 𝑡0) .

(54)

The current state 𝑥(𝑡0) is a known information and the
future state 𝑥(𝑡

𝑓
) = 𝑥(𝑡0 + Δ𝑡) is a function of the control

variable 𝑢(𝑡). Therefore, (54) can be rewritten in the form of

𝐽
𝐷
= 𝐿
𝐷 [𝑥 (𝑡 +Δ𝑡)] = 𝑓𝐷 [𝑥 (𝑢)] ,

𝐽
𝐸
= 𝐿
𝐸 [𝑥 (𝑡 +Δ𝑡)] = 𝑓𝐸 [𝑥 (𝑢)] ,

𝐽
𝐹
= 𝐿
𝐹 [𝑥 (𝑡 +Δ𝑡)] = 𝑓𝐹 [𝑥 (𝑢)] .

(55)

As the feasible control variables and their corresponding
future states have been obtained through dynamic prediction,
the optimal decision turns to a steady multiobjective opti-
mization problem with a feasible region of the optimization
variables.

There are two ways to deal with the multiobjective
optimization problem: the normalized and nonnormalized
methods. The former transforms the multiple objectives to
a single one through weight coefficients. The key problem
is how to select the weight coefficients, which still depends
on the engineer’s experience. The latter directly handles
the multiple optimization objectives by using the Pareto
mechanism, through which a group of optimal solutions
can be obtained. However, it is only suitable in solving the
optimization problem of static parameters, rather than the
optimal decision problem being discussed in this paper
(which allows only one optimal solution).

According to the characteristics of the HEV system, a
hierarchical optimization algorithm based on the normalized
method is proposed [33], which turns the multiobjective
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optimization problem to several single-objective ones in
different hierarchies:

min 𝐿
𝐹 [𝑥 (𝑢)] 󳨀→ 𝜔

∗

𝐸

if 󵄨󵄨󵄨󵄨𝜔𝐸 (𝑡) − 𝜔
∗

𝐸

󵄨󵄨󵄨󵄨 ≤ 𝛿𝜔0

Ω2 (𝑢) = Ω (𝑢)

else if 𝜔
𝐸 (𝑡) < 𝜔

∗

𝐸

Ω2 (𝑢) = Ω (𝑢) except
𝜔
𝐸 (𝑡 + Δ𝑡) < 𝜔𝐸 (𝑡)

else
Ω2 (𝑢) = Ω (𝑢) except
𝜔
𝐸 (𝑡 + Δ𝑡) > 𝜔𝐸 (𝑡)

end

Ω2
󳨀→

min 𝐿
𝐸 [𝑥 (𝑢)] 󳨀→ 𝐿

min
𝐸

s.t. 𝑢 ∈ Ω2 (𝑢)

if 𝐿min
𝐸
> 𝛿𝐸

𝐿
min
𝐸
󳨀→ 𝑥
∗
(𝑢) 󳨀→ 𝑢

∗
(𝑡)

else
Ω3 (𝑢) = Ω2 (𝑢) except
𝐿
𝐸
[𝑥 (𝑢
𝑖
)] ≤ 𝛿𝐸

end

Ω3
󳨀→

min 𝐿
𝐷 [𝑥 (𝑢)]

if Ω3 (𝑢) ̸= 𝜙

min 𝐿
𝐷 [𝑥 (𝑢)]

s.t. 𝑢 ∈ Ω3 (𝑢)

𝑥
∗
(𝑢) 󳨀→ 𝑢

∗
(𝑡)

else
end

(a) Fuel economy (b) Current supply capacity (c) Drivability
Hierarchical optimization algorithm

(56)

Firstly, the engine’s optimal speed𝜔∗
𝐸
is achieved based on

the fuel economy optimization, and it is compared with the
current speed𝜔

𝐸
(𝑡). Having the two speed levels close enough

illustrates that the fuel economy is already good, so there is no
need to adjust the engine’s speed. If not, the feasible region
should be restricted to ensure that the engine’s future speed
moves toward the optimal one.

Secondly, the current supply capacity is optimized in the
new feasible regionΩ2(𝑢), through which the minimum 𝐿min

𝐸

is obtained. Having 𝐿min
𝐸

larger than the thresholdmeans that
the current supply capacity is bad and needs to be optimized.
If 𝐿min
𝐸

is smaller than the threshold, it means that a good
current supply capacity can be achieved under some of the
control variables. Adding these control variables into the new
feasible region Ω3(𝑢) and turning to the next optimization
hierarchy then follow.

Lastly, the drivability is optimized in the new feasible
region Ω3(𝑢). As Ω3(𝑢) has ensured the fuel economy
and the current supply capacity, the optimal comprehensive
performance can be achieved in this hierarchy.

4.3.1. Fuel Economy Hierarchy. The expected power of the
engine is determined by the driver’s pedal, which can be
explained as

𝑃
𝐸com = 𝑓𝛼 (𝛼) =

{

{

{

𝛼
2
𝑃
𝐸max 𝛼 ≥ 0

𝑃
𝐸idl 𝛼 < 0,

(57)

where 𝛼 is the position of the driver’s pedal and 𝑃
𝐸com, 𝑃𝐸max,

and 𝑃
𝐸idl represent the engine’s expected power, maximum

power, and idle power, respectively.

As shown in Figure 3, the bottom point of each curve rep-
resents the engine’s optimal speed under the corresponding
power. Taking 𝑃

𝐸1, for example, while

𝑑fuel
𝑑𝜔
𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃
𝐸1 = 𝑎11

1
𝜔
𝐸max

+ 2𝑎12
𝜔
𝐸

𝜔2
𝐸max

= 0, (58)

the optimal speed can be obtained as 𝜔
∗

𝐸1 =

−(𝑎11/2𝑎12)𝜔𝐸max.
Using the same method, the optimal speed levels under

a group of engine’s powers are found out in advance, and the
optimal speed curve can then be plotted as shown in Figure 8.

Thus, the engine’s optimal speed is a function of the
expected power, which can be obtained through three-time
fitting of the polynomial expression

𝜔
∗

𝐸
= 𝑒0 + 𝑒1

𝑃
𝐸com
𝑃
𝐸max

+ 𝑒2 (
𝑃
𝐸com
𝑃
𝐸max

)

2
+ 𝑒3 (

𝑃
𝐸com
𝑃
𝐸max

)

3
,

𝜔
∗

𝐸
= max (𝜔∗

𝐸
, 𝜔
𝐸min) ,

𝜔
∗

𝐸
= min (𝜔∗

𝐸
, 𝜔
𝐸max) .

(59)

The fitting coefficients are

𝑒0 = 58.4,

𝑒1 = 413.5,

𝑒2 = − 663.9,

𝑒4 = 419.3.

(60)

4.3.2. Current Supply Capacity Hierarchy. As the sampling
time is relatively short, the variables 𝜔

𝐴
, 𝜔
𝐵
, 𝜇
𝐴
, 𝜇
𝐵
, 𝑆, and 𝑃

𝑐

are approximated to be unchanged during the time interval.
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Figure 8: Optimal speed curve of the engine.

Then, the current supply capacity becomes the function of the
control variables 𝑇

𝐴
and 𝑇

𝐵
. By making 𝐿

𝐸
= 0 in (26), the

equality relation of 𝑇
𝐴
and 𝑇

𝐵
can be achieved, expressed as

𝑇
𝐵
=
𝑑
𝑏
(𝑆 − 𝑆idl)

3
− 𝑃
𝑐

𝜔
𝐵
𝜇
𝐵

−
𝜔
𝐴
𝜇
𝐴

𝜔
𝐵
𝜇
𝐵

𝑇
𝐴
. (61)

In the feasible region Ω2(𝑢), as for each control variable
𝑇
𝐴
, the optimal torque𝑇∗

𝐵
can be calculated through (61).The

points that fulfill 𝐿
𝐸
≤ 𝛿𝐸 will be determined by searching

beside the optimal torque 𝑇∗
𝐵
, which are then added up to the

new feasible region Ω3(𝑢). If neither of the points meet the
conditions mentioned above, the smallest point of 𝐿

𝐸
will be

taken as the optimal decision.

4.3.3. Drivability Hierarchy. As shown in (21), the drivability
𝐿
𝐷
is a nonlinear function of the variables 𝜔

𝐸
, V, 𝑇

𝐸
, 𝑇
𝐴
,

and 𝑇
𝐵
. Based on the feasible region of these variables, which

has been achieved previously, the solutions to the nonlinear
optimization function (21) can be obtained by using the fea-
sible directions method, which is a gradient-based nonlinear
programming algorithm [34].

The basic idea of the feasible directions method is as
follows: start the search from a feasible point, and search in
the feasible descent direction to find a new feasible point that
makes the cost function fall down until the minimum value
of the cost function is determined.

As the states 𝜔
𝐸
, V, and 𝑇

𝐸
change slowly, their influence

can be ignored in a sampling time. The partial derivative of
𝐿
𝐷
with respect to 𝑇

𝐴
and 𝑇

𝐵
can be obtained as

𝜕𝐿
𝐷

𝜕𝑇
𝐴

= − 𝑐12
𝑖
𝑟
𝜂
𝑟

3.6𝑟
𝑤

V (𝑡) ,

𝜕𝐿
𝐷

𝜕𝑇
𝐵

= − 𝑐22
𝑖
𝑟
𝜂
𝑟

3.6𝑟
𝑤

V (𝑡) .
(62)

The gradient of 𝐿
𝐷
is ∇𝐿
𝐷
= [𝜕𝐿

𝐷
/𝜕𝑇
𝐴
, 𝜕𝐿
𝐷
/𝜕𝑇
𝐵
]
𝑇.

Based on the gradient ∇𝐿
𝐷
, the drivability can be opti-

mized by utilizing the feasible directions method. The opti-
mization process is as follows.

Step 1. Select an initial feasible point in the feasible region
Ω3(𝑢), and search in the negative gradient direction to find
a new feasible descent point.

In the EVT1 mode, 𝑐12 < 0, 𝑐12 < 0, so

𝜕𝐿
𝐷

𝜕𝑇
𝐴

> 0,

𝜕𝐿
𝐷

𝜕𝑇
𝐵

< 0,
(63)

whichmeans that𝐿
𝐷
ismonotonously increasingwith𝑇

𝐴
and

monotonously decreasing with 𝑇
𝐵
. Therefore, the decreasing

direction of 𝑇
𝐴
and the increasing direction of 𝑇

𝐵
are the

negative gradient directions (descent directions).
In the EVT2 mode, 𝑐12 > 0, 𝑐22 < 0, so

𝜕𝐿
𝐷

𝜕𝑇
𝐴

< 0,

𝜕𝐿
𝐷

𝜕𝑇
𝐵

> 0,
(64)

which means that 𝐿
𝐷

is monotonously decreasing with
𝑇
𝐴

and monotonously increasing with 𝑇
𝐵
. Therefore, the

increasing direction of 𝑇
𝐴
and the decreasing direction of 𝑇

𝐵

are the negative gradient directions (descent directions).

Step 2. Search along the negative gradient direction step by
step to find all the optimization boundary points.

In the EVT1 mode, find the points that satisfy the condi-
tion that 𝑇

𝐵
is the largest under the same 𝑇

𝐴
, while 𝑇

𝐴
is the

smallest under the same 𝑇
𝐵
.

In the EVT2 mode, find the points that satisfy the condi-
tion that 𝑇

𝐵
is the smallest under the same 𝑇

𝐴
, while 𝑇

𝐴
is the

largest under the same 𝑇
𝐵
.

Step 3. Calculate the function 𝐿
𝐷
of the optimization bound-

ary points, find the minimum value 𝐿min
𝐷

, and its correspond-
ing control variables are the optimal decision.

In addition, as the optimal decision algorithm is used to
find out the optimal control variables in the feasible region,
which has been obtained through the dynamic prediction,
the iterative computation is unnecessary at each step time.
Therefore, the convergence of the optimization algorithm can
be ensured, which is important for the control system.

4.4. Feedback Compensation. As the OPDC approach is a
model-based control method, its control effects are related to
the accuracy of the model. Additionally, the external distur-
bances and noises could also make the components’ actual
states deviate from the expected states, which has a serious
impact on the control effect. To overcome the influence
of the model error and the disturbance signals, the model
parameters and control parameters can be modified by uti-
lizing the state feedback, which is also called as the feedback
compensation.

The engine’s speed is an important control variable and
state variable. To guarantee its control accuracy, the closed-
loop control is carried out according to the deviation between
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Figure 9: Feedback compensation of the engine’s speed.
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Figure 10: Feedback compensation of the DC bus voltage.

the optimal speed and the actual speed, which is illustrated in
Figure 9.

The feedback compensation to the engine’s expected
speed 𝜔com

𝐸
(𝑡) is based on the PID controller

𝛿𝜔
𝐸 (𝑡) = 𝜔

∗

𝐸
(𝑡) − 𝜔𝐸 (𝑡) ,

𝜅
𝐸 (𝑡)

= 𝐾
𝑃
[𝛿𝜔
𝐸 (𝑡) +

1
𝑇1
∫

𝑡

0
𝛿𝜔
𝐸 (𝑡) 𝑑𝑡 +𝑇𝐷

𝑑

𝑑𝑡
𝛿𝜔
𝐸 (𝑡)] ,

𝜔
com
𝐸

(𝑡) = 𝜔
com
𝐸

(𝑡) + 𝜅𝐸 (𝑡) ,

(65)

where 𝜅
𝐸
(𝑡) is the compensation value and𝐾

𝑃
,𝑇1, and𝑇𝐷 are

the parameters of the PID controller.
The bus voltage is an important parameter of the electrical

system; the control accuracy of which directly determines
whether or not the systemwould operate normally. To realize
the accurate control of the bus voltage, the feedback com-
pensation to the torque commands of the twoMGs is carried
out by using the deviation between the expected voltage and
the actual voltage (see Figure 10). As the compensation of the
MGs’ torque would make the control variables deviate from
the optimal points and further influence the comprehensive
performance of the system. Therefore, if the bus voltage
is within the allowable range, it is better not to modify
the control variables. Only when the voltage deviation is
relatively large, which may influence the system’s normal
operation, it is necessary to make small modification to
the control variables. The amount of compensation can be
obtained through experimental test and calibration.

5. Simulation and Real-Time Implementation

The dynamic simulation model and the on-line test platform
of the HEV equipped with an EMT system are created to
verify the control effects and the real-time performance of the
nonlinear optimal control approach being proposed in this
paper.

Vehicle

Results

MGBMGA

Engine
Coupling mechanism

Control unit

Figure 11: Dynamic simulation platform of the HEV.
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Figure 12: Driving cycle of the heavy-duty HEV.

5.1. Dynamic Simulation. The simulation model is built on
the MATLAB platform (see Figure 11). The model mainly
consists of the physical system and the control system. The
actual working characteristics of the physical system are fully
considered in themodel.The experimental data of the engine,
the MGs, the battery, and the coupling mechanism are used
to truly reflect the operation condition of the physical system.

In the control system, the control algorithm is written by
using the embedded MATLAB function. The inputs are the
state variables collected by the sensors, and the outputs are
the control variables calculated by the control algorithm. As
the MATLAB function can be transformed to C code and
downloaded to the real controller, the development time of
the control system can be reduced significantly.

The driving cycle of the heavy-duty HEV being studied
in this paper is shown in Figure 12, which is derived from
the experimental data. The resistance cycle and the electrical
power cycle are also designed based on the characteristics
of the studied vehicle, as shown in Figure 13. The vehicle’s
driving resistance, including the rolling resistance, the air
resistance, and the gradient resistance, can be expressed with
a unified resistance coefficient. The electricity demand of the
electric appliances, including cooling fans, grease pump, air
conditioning units, and so forth, can be expressed with a
unified electrical power. To verify the control effects and the
adaptability of the OPDC approach, both the resistance cycle
and the electrical power cycle are changed with the vehicle
speed, which both have the characteristic of randomness.

The rule-based control approach, being used for compar-
ison, is also written and simulated using the same simulation
platform and cycles.
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(b) Electrical power cycle

Figure 13: Resistance cycle and electrical power cycle of the HEV.
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Figure 14: Simulation results under the comprehensive cycles.

The simulation results under the comprehensive cycles
are shown in Figure 14. The vehicle speed under the OPDC
approach is in good agreement with the driving cycle, which
illustrates that a good driving performance is achieved by this
control approach. The vehicle’s speed under the rule-based
approach matches the driving cycle as good most of the time,
but when the vehicle is accelerating fast, it cannot deliver a
good driving performance. Thus, the OPDC approach can
achieve better drivability than the rule-based approach. It
can be seen from (b) that the engine’s speeds under the two

approaches have similar trends, but the values are not the
same. This is because the EMT system has two degrees of
freedom, which illustrates that the engine’s speed can be
optimized when the vehicle’s speed is restrained. From (c)
and (d), we know that the MGs’ torques under the two
approaches are quite different, especially the MGB’s torques.
This is because the torques are obtained by considering the
comprehensive performance under the OPDC approach, but
only the experience of the engineers under the rule-based
approach. In summary, the speeds and torques under the two
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Figure 15: Comparison of the components’ power.

control approaches are different, which leads to difference in
performance.

Figure 15 shows the power states of the engine, the battery
pack, and the two MGs under the two control approaches.
It can be seen from (a) that the engine’s powers are close
most of the time, but when the road is bad or the vehicle’s
speed is high (see Figures 12 and 13), the engine’s power
under the OPDC approach is obviously higher than that
under the rule-based approach. That is to say, the OPDC
approach can achieve a better driving performance. It can
be seen from (b) that the battery’s power under the OPDC
approach is much smaller and steadier than that under the
rule-based approach. Therefore, the OPDC approach can
avoid battery overcharging or overdischarging and greatly
improve the battery’s cycle life. From (c) and (d), we can
see that the MGs’ powers under the two approaches have
similar trends, but the powers under the OPDC approach
are a little smaller, which can reduce the conversion loss
between the electrical and mechanical powers and improve
the comprehensive efficiency of the EMT system.

The states of the electrical system are shown in Figure 16.
It can be seen from (a) that the SOC basically remains
unchanged under the OPDC approach, which reduces
the loss during the charge-discharge process and reduces

the pressure to the battery pack. The SOC can be as close as
the initial state under the rule-based method after repeatedly
modifying the control parameter, which provides the same
condition for the comparison of the two control approaches.
However, if the modification is not carried out according to
the given cycles, the rule-based method can hardly guarantee
the recovery of the SOC. Therefore, it gives more pressure to
the battery pack, which needs to have more energy storage. It
can be seen from (b) that the voltage of the DC bus under
the OPDC approach is much steadier than that under the
rule-based approach.This is because the OPDC approach has
made a prediction to the bus voltage and ensured the balance
between the supply and the demand of the electrical power,
which cannot be done under the rule-based approach.

Figure 17 shows the comparison of the engine’s working
points under the two control approaches. It can be seen from
the comparisons of (a) and (b) that the working points under
the OPDC approach concentrate near the engine’s optimal
fuel economy curve, while the working points under the
rule-based approach are mostly scattered near the optimal
fuel economy region, which is also the factor needed to
be considered in the process of rule-making. To guarantee
the drivability and the current supply capacity, the working
points of the engine deviate from the optimal economic curve
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Figure 16: States of the electrical system.
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Figure 17: Comparison of the engine’s working points.

Table 2: Comparison analysis of the control effects.

Cost function Rule-based OPDC Improvement
𝐽
𝐷
/kwh 22.71 16.15 28.9%

𝐽
𝐸
/kwh 3.6 1.89 47.5%

𝐽
𝐹
/L 13.45 10.88 19.1%

(region), that is, sacrificing the fuel economy to ensure the
comprehensive performance.

The qualitative comparison of the two control approaches
has been done in the past. Table 2 shows the quantitative
comparison of the two control approaches.

In the OPDC approach, the index functions of drivability,
current supply capacity, and fuel economy, 𝐿

𝐷
, 𝐿
𝐸
, and 𝐿

𝐹
,

can be obtained through (21), (26), and (27). In the rule-based
method, it is necessary tomeasure its control effects andmake
the comparison with the results of the OPDC approach.

It can be seen from Table 2 that compared with the rule-
based approach, the drivability, current supply capacity, and
fuel economyunder theOPDCapproach have been improved
by 28.9%, 47.5%, and 19.1%, respectively. Thus, the OPDC

control approach can obviously improve the comprehensive
performance of the HEV system and, therefore, has a very
good research value.

5.2. On-Line Test. The simulation has been carried out by
using the MATLAB software, which verifies the effectiveness
of the OPDC approach. Based on this simulation, the on-
line test is implemented by utilizing the dSPACE platform to
verify the real-time performance of the OPDC approach.

The dSPACE platform, which can realize seamless con-
nection with the MATLAB/SIMULINK, has been widely
used in the development and test process of control algo-
rithms. The ControlDesk, a comprehensive test software
based on the dSPACE platform, is mainly applied in the on-
line control process of the rapid control prototype (RCP) and
the hardware-in-loop simulation (HIL).

Firstly, based on the simulation model, the CAN com-
munication interface of the control unit and the vehicle is
established by using the RTI model store (see Figure 18). The
control unit and the vehicle model send and receive the data
through CAN1 and CAN2, respectively. The types of data
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Figure 18: Communication interface of the on-line test platform.

Figure 19: On-line test platform.

sent by CAN1 and received by CAN2 correspondingly match.
They are the same with the types of data received by CAN1
and sent by CAN2.

Secondly, the models are transformed to C code using
the MATLAB code-generation toolbox and downloaded to
the two chips of the MicroAutoBox (hardware system of the
dSPACE platform). The two chips, simulating the controller
and vehicle, are connected with each other by the external
CAN bus, through which they are able to realize real-time
data communication.

Lastly, the experimental interface is established by using
the ControlDesk, and the on-line test is conducted, as shown
in Figure 19. The vehicle model receives the control variables
through the CAN bus and sends the state information back
to the CAN bus. By using the state information received from
the CAN bus, the on-line optimization based on the OPDC
algorithm is carried out, and the optimal control variables
are sent back to the CAN bus. It, thus, can be seen that the
controller and the vehicle model realize real-time commu-
nication through the CAN bus. Their operation condition is
displayed on the ControlDesk experimental interface in real
time, and the experimental data are automatically saved, so
they can be used conveniently for the analysis.

The test results are basically the same with those of
the dynamic simulation, which means that the OPDC con-
trol approach has a good real-time performance. The on-
line test results can be analyzed based on Figure 19, and

the experiment curves will not be given repeatedly. The
dSPACEplatform can be directly used in the real-time control
process as a top-level controller, which can greatly save the
developing time of the actual controller.

6. Conclusion

The existing control strategies of the HEVs mainly deal with
energy management between the engine and the battery to
realize the best fuel economy and emission performance.
However, in the EMT system, the battery’s power is far
less than the engine’s power, which means that energy
management makes little sense. The dynamic control of the
engine and the MGs is the main problem in the EMT system.
As these components are coupled together by the coupling
mechanism and the power unit and all of them have strong
nonlinear characteristics, it is challenging to develop an
optimal control method for the EMT system.

The multiobjective nonlinear dynamic optimization
model of the HEV, equipped with a dual-mode EMT
system, is derived based on the characteristics of the system,
such as the performance requirements for drivability,
fuel economy and current supply capacity, the nonlinear
coupling constraints of the battery, the MGs, and the electric
appliances. Based on the dynamic model of the system, a
novel nonlinear optimal control approach is proposed in
this paper, which consists of state observation, dynamic
prediction, optimal decision, and feedback compensation.
The state observation models of the engine’s torque and
the driving resistance are created based on the dynamic
and coupling characteristics of the EMT system, and the
optimal state estimation is conducted using the Kalman
filtering algorithm. In the dynamic prediction part, the
constraints are divided into single constraints, simple
coupling constraints, and complex coupling constraints,
and the hierarchical search mechanism is also adopted. A
multiobjective hierarchical optimization algorithm, which
transforms the multiobjective optimization problem to
several single-objective ones within different hierarchies, is
proposed in the optimal decision part, and the nonlinear
programming algorithm based on feasible directions method
is adopted to solve the nonlinear optimization problem.
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The optimization strategy and the feedback control are
combined together in the feedback compensation part, so
that the real-time performance and the effectiveness of the
control algorithm are guaranteed.

The dynamic simulation platform of the HEV is estab-
lished, and the simulation results verify the efficiency of the
OPDC approach. Compared with the rule-based approach,
the drivability, current supply capacity, and fuel economy
are improved by 28.9%, 79.4%, and 19.1%, respectively, under
the OPDC approach. Then, the on-line test is carried out
based on the dSPACE platform, which verifies the real-time
performance of the OPDC approach and lays the foundation
for its real-time implementation.
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mization of power management in an hybrid electric vehicle
using dynamic programming,” Mathematics and Computers in
Simulation, vol. 73, no. 1–4, pp. 244–254, 2006.

[5] Y. Zou, H. Shi-Jie, L. Dong-Ge, G. Wei, and X.-S. Hu, “Optimal
energy control strategy design for a hybrid electric vehicle,”
Discrete Dynamics in Nature and Society, vol. 2013, Article ID
132064, 8 pages, 2013.

[6] A. P. Pourhashemi, S. M. M. A. Movahed, and M. S. Panahi,
“Application of the fuel-optimal energy management in design
study of a parallel hybrid electric vehicle,” Journal of Fuels, vol.
2014, Article ID 417172, 12 pages, 2014.

[7] X. Fu, H. Wang, N. Cui, and C. Zhang, “Energy management
strategy based on the driving cycle model for plugin hybrid
electric vehicles,” Abstract and Applied Analysis, vol. 2014,
Article ID 341096, 6 pages, 2014.

[8] C. Musardo, G. Rizzoni, Y. Guezennec, and B. Staccia, “A-
ECMS: an adaptive algorithm for hybrid electric vehicle energy
management,” European Journal of Control, vol. 11, no. 4-5, pp.
509–524, 2005.

[9] C. Vagg, C. J. Brace, S. Akehurst, and L. Ash, “Minimizing
battery stress during hybrid electric vehicle control design,”
in Proceedings of the 9th IEEE Vehicle Power and Propulsion
Conference (VPPC ’13), University of Bath, 2013.

[10] B. Gu andG. Rizzoni, “An adaptive algorithm for hybrid electric
vehicle energy management based on driving pattern recog-
nition,” in Proceedings of the ASME International Mechanical
Engineering Congress and Exposition (IMECE ’06), November
2006.

[11] Y. Zou, F. Sun, X.Hu, L.Guzzella, andH. Peng, “Combined opti-
mal sizing and control for a hybrid tracked vehicle,” Energies,
vol. 5, no. 11, pp. 4697–4710, 2012.

[12] L. Johannesson and B. Egardt, “A novel algorithm for predictive
control of parallel hybrid powertrains based on dynamic pro-
gramming,” Advances in Automotive Control, vol. 5, no. 1, pp.
343–350, 2007.

[13] P. Pisu and G. Rizzoni, “A supervisory control strategy for series
hybrid electric vehicles with two energy storage systems,” in
Proceedings of the IEEEVehicle Power and PropulsionConference
(VPPC ’05), IEEE, September 2005.

[14] P. Tulpule, V.Marano, and G. Rizzoni, “Energymanagement for
plug-in hybrid electric vehicles using equivalent consumption
minimisation strategy,” International Journal of Electric and
Hybrid Vehicles, vol. 2, no. 4, pp. 329–350, 2010.

[15] M. Sivertsson, “Adaptive control using map-based ECMS for
a PHEV,” in Proceedings of the IFAC Workshop on Engine and
Powertrain Control, Simulation andModeling (E-COSM ’12), pp.
357–362, October 2012.

[16] S. Overington and S. Rajakaruna, “Review of PHEV and
HEV operation and control research for future direction,” in
Proceedings of the 3rd IEEE International Symposium on Power
Electronics for Distributed Generation Systems (PEDG ’12), pp.
385–392, IEEE, Aalborg, Denmark, June 2012.
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